首页> 外文OA文献 >Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics
【2h】

Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics

机译:快速并行量子分子动力学的图划分方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study a graph partitioning problem motivated by the simulation of the physical movement of multi-body systems on an atomistic level, where the forces are calculated from a quantum mechanical description of the electrons. Several advanced algorithms have been published in the literature for such simulations that are based on evaluations of matrix polynomials. We aim at efficiently parallelizing these computations by using a special type of graph partitioning. For this, we represent the zero-nonzero structure of a thresholded matrix as a graph and partition that graph into several components. The matrix polynomial is then evaluated for each separate submatrix corresponding to the subgraphs and the evaluated submatrix polynomials are used to assemble the final result for the full matrix polynomial. The paper provides a rigorous definition as well as a mathematical justification of this partitioning problem. We use several algorithms to compute graph partitions and experimentally evaluate their performance with respect to the quality of the partition obtained with each method and the time needed to produce it.
机译:我们研究了在原子级上模拟多体系统的物理运动所激发的图划分问题,其中力是根据电子的量子力学描述来计算的。文献中已经针对矩阵仿真发布了几种先进的算法,这些算法基于矩阵多项式的评估。我们旨在通过使用特殊类型的图分区有效地并行化这些计算。为此,我们将阈值矩阵的零-非零结构表示为图形,并将该图形划分为几个部分。然后,针对与子图相对应的每个单独的子矩阵,评估矩阵多项式,然后使用评估后的子矩阵多项式来组装完整矩阵多项式的最终结果。本文提供了对该分区问题的严格定义以及数学依据。我们使用几种算法来计算图形分区,并根据每种方法获得的分区质量以及生成该分区所需的时间,通过实验评估其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号